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of  N,,  where N, is the number  of  reflections with 
Rc.~c larger than a given threshold.  In Fig. 1 the trend 
of  RES ,  is shown for the nine test structures:  in 
accordance  with our  observat ions  in Table 2, RES ,  
general ly increases with N, 

The above considerat ions  suggest that  est imating 
non-measured  diffraction magni tudes  is rather  com- 
plicated. The statistical relat ionships which can be 
used are of  order  N -~ (and therefore ra ther  weak) 
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Fig. 1. RES, is plotted as a function of N,, where N, is the number 
of reflections with Re,it larger than a given threshold. The curves 
correspond to the following test structures: (1) GEN1; 
(2) GEN2; (3) PGE2; (4) SKN1; (5) LOGANIN; (6) FEGAS; 
(7) SALEX; (8) PIC; (9) TIPORF. 

and do not offer a sat isfactory solution o f the  problem, 
unless some supplementa ry  structural  informat ion  is 
available.  

The initial contr ibut ion by L. Favia is kindly 
acknowledged.  
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Abstract 

Procedures are described to extract the values of  
individual  phases from est imated structure invariants.  
The l inear-equat ion and least-squares methods  are 
used as two separate  techniques in these procedures.  
The l inear-equat ion method  uses a linearly indepen- 
dent  set of  equat ions,  with arbitrari ly assigned 
integers, which are sufficient in number  to solve for 
values of  an equal number  of  phases.  The least- 
squares method  uses a set of  overdetermined 
equat ions in which an ' integer problem'  has to be 
considered.  The assembly of  these two techniques 
with a novel integer- t r ia l -and-error  method shows a 
remarkable  ability to overcome the ' integer problem' .  
As a test of  the whole procedure ,  phases were extrac- 
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ted from three-phase  structure invariants calculated 
from the theoretical  da ta  for the pla t inum chloride 
derivative of  cytochrome C55o. 

Introduction 

The structure invariant  continues to play a central 
role in the direct-methods approach  to the phase 
problem. Over  the past few years,  several investigators 
have a t tempted  to derive new probabil ist ic  form- 
ulae to improve s t ructure- invariant  est imations 
(Haup t iman ,  1982; Giacovazzo,  1983). Some of  these 
formulae,  for example  the formula  for anomalous-  
scattering data ,  yield unique estimates for the struc- 
ture invariants  themselves,  as opposed  to their 
cosines. 

© 1991 International Union of Crystallography 
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A tradit ional  approach  to the phase problem 
employs the three-phase structure invariant  or ' tr iple '  

~h AV q3k "~- q)l = Wh.k, where h + k + ! = 0. 

The value o f the  sum, Wh.k, is either implici t ly assumed 
to be. zero (modulo 2zr) (i.e. Wh.k=0zr, 2"n', 4zr etc.) 
or is explicit ly estimated, e.g. via anomalous-scat-  
tering data and probabi l is t ic  formulae (Haup tman ,  

t ! ! 1982), to be mh.k = Wh.k+2ZrN (i.e. Wh.k = Wh.k, Wh.k+ 
2zr, W~,.k+47r etc.). The terms 0-rr, 27"r, 4"n" etc. appear  
when the values of  the individual  phases are al lowed 
to range from zero to 2~r. For example,  when 
~0h = 517"/4, ~¢k=3Zr/4 and q~t= zr/2, the triple value 
W h . k = 5 7 r / 2 = 2 ~ + ' n ' / 2 .  In many  direct-methods 
approaches  to phase extraction, phase values are esti- 
mated by the tangent formula  (Haup tman  & Karle, 
1956) or the modified tangent formula (Ol thof  & 
Schenk, 1982). Because tr igonometric functions of 
the phases and the estimates w~,,~, are involved, the 
values of the modulo  2-tr parts of  Wh.k are immater ia l ,  
e.g. cos (mh.k) = COS (w~ , . k+2zrN)  = COS (W~,.k), no mat- 
ter what the value of the integer N. However, in the 
sequel we will describe our efforts to further a distinct 
approach to phase extraction and in that approach 
the ability to estimate values for the modulo  2zr por- 
tions of the phase sums, i.e. the integers N, is critical. 

Woolfson (1977) pointed out an attractive alterna- 
tive to the tangent formula  in a paper  describing a 
potential successor to M U L T A N  called M A G L I N .  
It described efforts to implement  a solution of a set 
of  s imul taneous  l inear equations involving the struc- 
ture invariants.  The goal was to develop a large set 
of  starting values and to refine, by least-squares tech- 
niques, the values of the phases. As Woolfson pointed 
out, the tangent  formula  can, on occasion, take a set 
of  correctly calculated phases and 'refine' them away 
from their initial (correct) values. The least-squares 
approach he described,  on the other hand,  was quite 
stable and had a rather larger radius of convergence 
than the tangent formula.  To make the least-squares 
approach feasible it was imperat ive to have a correct 
set of  integers, N 's ,  to associate with each of  the 
structure invariants involving, say, q~h 

q~h+ ~k + qh, = W~,.~, + 2~rN~ (1) 

q~h = 00~,.k, + 2~rN, - q~k, - q~,, (2) 

with i = 1, 2 , . . . ,  q, where q is the number  of triples 
involving q~h- If the values of all the phases to be 
determined are constrained to be between 0 and 2~r, 
then the values of 0~h.k, are constrained to be between 
0 and 67r, i.e. Wh,k=Wth,k-4-2~Ni; N~---0, 1 or 2. If 
we must determine p phases using q triples then there 
are 3 '~-p possible sets of  integers that are associated 
with the estimates W~,,.k,, if all of  the integers are 
al lowed to assume all of  their possible values. Such 
a situation is computa t ional ly  intractable. However, 
Woolfson pointed out a strategy that greatly reduced 

the number  of  values that the Ni could assume. Let 
us assume that we have abstracted from the complete  
set of  triples available to us a very small independent  
subset that involves p phases and an equal number  
of triple relat ionships.  A good place to find these 
would be at the bottom of  a convergence map. The 
triples involved would presumably  be the ones for 
which we have the most reliable estimates of the 
fractional parts W~,,.k, of  the phase sums. Now, in the 
situation where the number  of  unknowns  and the 
number  of  l inear equat ions are exactly equal it is 
possible to arbitrari ly assign the integer portions Ni, 
say {N i=0} .  This requires that the subset of  p 
equations is l inearly independent  and that it involves 
p equations in p unknowns.  Our freedom to arbitrari ly 
assign the p values of  N, comes about because,  in 
this type of l inearly independent  set of  equations,  the 
addi t ion of  any mult iple of  217" to the r ight-hand sides 
of (2) merely adds a like mult iple  of  2zr to the 
individual  phase ~¢h- Once we overdetermine the set 
of  equations,  however, we are no longer free to assign 
arbitrary values to the addi t ional  integers N~ intro- 
duced as addit ional  equat ions (addi t ional  triples) 
enter the system. 

With the subset of  phases and triples in equal 
numbers  and with the integer portions of (1) 
arbitrari ly assigned, we can readily solve for the 
phases. Note, however, that any errors in the estima- 
tions of the fractional parts of  the phase sums £Uh.k, 
are directly transferred to the calculated phases. 
Therefore,  the size of the subset is a reflection of our 
confidence in the techniques  for est imating the w' 
values. We can afford to be conservative at this stage 
and restrict the subset to ten or fewer triples and 
unknown phases. 

Given the values calculated for the small  subset of  
phases,  we can calculate the values of all triples 
involving those phases,  inclusive of the original subset 
of  triples that de termined the starting phases,  paying 
special attention to the calculat ion of the integer parts 
of  any addi t ional ly  de termined triples. It will be the 
case that any errors in t roduced into the phase values 
from the initial fractional estimates W~,,,k, will cause 
the addi t ional ly  de termined triple equations to be 
approximat ions  to equalities. For example,  in the first 
step we might have de termined the phases for reflec- 
tions with serial numbers  ~,, q~5 and q~ and further- 
more it may transpire that ~¢, + ~ + q~ is a triple that 
did not enter into the initial estimates for q~,, ~o~ and 
~s. We now have trial values for q~, q~5 and q~, for 
example,  ~o, = zr/4, q~5=3~/4,  ~os=5~/4 ,  and we 
may have, via a probabi l is t ic  approach,  an estimate 
of w'~.~ = 0~-. The addi t ional  relat ionship is 

q~ + q~5 + ~8 = w'~.5 + 2 ~ N  

o r  

-rr/4 + 3 zr/4 + 5"n'/4 = 0zr + 2zrN 
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o r  

9zr/4 = 27rN. 

In this case, N = 9/8. The nearest integer to 9 /8  is 
obviously N = 1. 

We may now utilize a least-squares procedure  to 
refine the values of the p phases using the original 
set of  p equat ions with their arbitrarily assigned 
values of  N,, plus the addi t ional ly  de termined 
equat ions with their integer mult iples of  27r set to the 
values of  the nearest integers. The nearest integers 
are calculated as the integers nearest to 

( ~ h ,  + (Pk, + (~li  - -  t o t  h,,k,)/2 rr. (3) 

The system is overdetermined and we assume that 
errors in the equat ions come from errors in the esti- 
mates for to~,,.k,. We are free to adjust the phases to 
minimize  that error. With those phases we may again 
calculate nearest  integers for all the equat ions etc. 
and cycle between phase adjus tment  and integer 
adjustment .  Such a procedure  usually converges in 
one or two cycles. 

The integer problem 

With a small  subset of  p determined phases and q 
( > p )  triples as described we might now endeavor  to 
calculate the value of  a single addi t ional  phase,  q~h. 
That calculat ion will involve previously de termined 
phases from the basis set and some small  number  of  
addi t ional  triples involving q~h and the phases in the 
basis set. If the original basis set involved p phases 
and q triples, the new set of  equations involves p + 1 
phases and q+q~ triples (q, being the number  of  
newly added  triples). We do not know the value of 
~0h but we can restrict it to the range 0-27r. We need 
to assign values for the q, addi t ional  integers intro- 
duced with the q~ addi t ional  triples. One way to 
proceed would be to assume Ch = 7r and calculate 
values of the nearest integers for the q, addi t ional  
triples. There may be errors in these integers due to 
errors in the to~,.k, values and the assumpt ion  that 
q~h =T r, but we have observed that we are rarely off 
by more than +1, i.e. if  we calculate N = 2.4, the true 
value of  N is probably  2, but may possibly be 1 or 
3. If q, addi t ional  triples are brought in with phase 
~0h we might  have to perform as many  as 3 ~, least- 
squares calculat ions to be certain we have not intro- 
duced any substant ial  errors in the refinement process 
due to a miscue on the integers. Again, such a situ- 
ation is computa t ional ly  unattractive. A partial  resol- 
ution to the integer p rob lem comes about  when we 
realize that the values of  the addi t ional  integers are 
severely restricted, to q l +  1 values and not to 3 q, 
values, because of  their interconnectedness.  We pro- 
ceed as follows. Assume ~0h = 0 [noted as ~0h(0)] and 
calculate the nearest integer values for the q~ addi- 
t ional triples. Now let ~0h increase to a certain point  

~0h(1). One of  the q, values of  N~ will 'click'  over to 
the next integer which must be larger than its previous 
value. For example,  say that we introduce one new 

t t ! t phase ~h and four new invariants  to,, to2, to3 and tog. 
Restrict the phase ~h to the interval (0, 27r). At ~h(0) = 
0, say that we calculate NI =0 .1 ,  N2 = 1.2, N3= 1.3 
and N4 = 2.9. The nearest integers are 0, 1, 1,3 respec- 
tively. As ~h increases from 0 up to but not inc luding 
0.4~r, the values of  the nearest integers are not 
changed.  However,  at ~ , ( 1 ) =  0.4~" we calculate that 
NI = 0.1 + 0 . 2  =0 .3 ,  N2 = 1 .2+0 .2  = 1.4, N3= 
1 . 3 + 0 . 2 = 1 . 5  and N 4 = 2 . 9 + 0 . 2 = 3 . 1 .  The nearest 
integers are now 0, 1, 2, 3 respectively. Only  the 
nearest integer for N3 has changed  and has increased 
by one from its previous value. Now increase ~oh(2) 
from 0.4rr to 0.6zr. Calcula ted  values for the N ' s  
remain unchanged  until  ~0h(2)=0"6rr, where N1 = 
0 . 1 + 0 . 3 = 0 . 4 ,  N 2 = 1 . 2 + 0 . 3 = 1 . 5 ,  N 3 = 1 . 3 + 0 . 3  = 
1.6 and N4 = 2 . 9 + 0 . 3  = 3.2. The nearest integers are 
0, 2, 2, 3. Again,  a single integer, this time N2, 'clicks'  
up to the next-higher  value, i.e. from 1 to 2. Cont inue  
to increase q~h(3) from 0.67r to 0.8zr, and now N, = 
0 . 1 + 0 . 4 = 0 . 5 ,  N 2 = 1 . 2 + 0 . 4 = 1 . 6 ,  N 3 = 1 . 3 + 0 . 4  = 
1.7 and N 4 =  2 . 9 + 0 . 4 =  3.3. The nearest integers are 
now 1, 2, 2, 3. Again, just  one integer, NI,  advances,  
from 0 to 1. Finally,  increase q~h(4) to 1"27r. We find 
that N~ = 0 . 1 + 0 . 6 =  0.7, N 2 = 1 . 2 + 0 . 6 = 1 . 8 ,  N3= 
1 . 3 + 0 . 6 =  1.9 and N 4 = 2 . 9 + 0 . 6 = 3 . 5 ,  with nearest 
integers 1, 2, 2, 4 respectively and only N4 has 
increased. Notice that if  we assume q~h to have a value 
greater than q~h(4) = 1 "2rr (in fact any value up to 27r) 
the nearest integers a l lowable  for the q~ addi t ional  
triples do not change. The only al lowable sets of  
integers for any value of  q~h are then 

NI N2 N3 N4 
0 1 1 3 
0 1 2 3 
0 2 2 3 
1 2 2 3 
1 2 2 4. 

There are now q , + l  ( 4 + 1 = 5 )  possible sets of  
integers which can enter into a least-squares deter- 
minat ion  of  the phase ~oh and adjus tment  of  the p 
original phases.  

This process can clearly be repeated, adding a 
single unknown phase ~op+2, thus generat ing q2 new 
structure invariants,  ad jo in ing  q2 addi t ional  l inear 
equations with q2 new integers 

Nq+q,+l, Nq+,~,+2,..., Nq+q,+q2, 

via (3), having precisely q2+ 1 sets of  values, which 
can be solved by iterative least squares etc. 

As the procedure is repeated,  the whole system 
follows the convergence map  to reach new phases 
and improve estimates for all phases. This process 
we call the tr ial-and-error least-squares method - 
TELS. It works extremely well even in the presence 
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of a large mean error in the initial estimates of the 
structure invariants.  

Implementation 

The tr ial-and-error least-squares technique is imple- 
mented in the following steps. 

(a) The data are separated into three reflection 
groups. Group  one contains general reflections with 
large [E I values. Group  two consists of  general reflec- 
tions having moderate  {El values. Because the struc- 
ture-invariant  formulas we use cannot  rel iably esti- 
mate invariants which involve special reflections, all 
special reflections are stored in group three. 

(b) Three different groups of three-phase structure 
invariants are constructed and estimated: (1) all three 
phases lie in group one; (2) at least one phase lies in 
group one and at least one phase lies in group two; 
(3) precisely one phase lies in group three. 

(c) A convergence map  is calculated using group 
one reflections only. There are two critical require- 
ments for the convergence map: it should have large 
A values on the bottom of  the map and there must 
be no gaps in the map. Two criteria can be used to 
ensure these requirements.  One is the use of  the 
product of  A values instead of the normal ly  employed 
t~ values. This will give a good A-value distribution, 
but sometimes gaps occur in the map. The other 
maximizes  the number  of  relations involved. It always 
shows a gap-free map, but frequently has a poor A 
distribution. Combin ing  the two criteria, the product 
of  A values is used for the bottom half  of  the map 
and the number-of-re la t ions  criterion is used for the 
top half. With this method a gap-free large-A-bottom 
convergence map can normal ly  be constructed. At 
the extreme bottom of the map,  a certain number  of  
reflections will be left automatical ly  for fixing the 
origin. 

(d) From the bottom of  the convergence map a 
small set ( < t e n )  of  independent  l inear equations is 
selected by checking that the determinant  is not equal 
to zero. This equation set can be solved by straightfor- 
ward means. 

(e) A set of  starting nearest integers is calculated 
with the phase solutions of step d. Then a trial-and- 
error least-squares procedure is carried out step by 
step. For each step, the best result is always among 
the smallest values of the residual,  R. 

R = E I(¢~, + ~ , +  ~o,,) - (o~,,.~ + 2~rN,) l /Q,  

where Q=q+q,+. . .+qp  is the total number  of 
equations involved in the least-squares calculat ion 
and i = l , 2 , . . . , Q .  To avoid missing the correct 
answer, a few ( - f i v e )  sets with lowest R values are 
kept as the starting points for the next step. Within 
the first 100 steps, the typical number  of  addi t ional  
triples per step, qj, is less than ten. The number  of 

Table 1. 20315 estimated to' values from 616 Friedel 
pairs of anomalous-scattering data, (error) of w'= 

56.12 ° 

To see the unbiased feature of the estimation, the invariants are 
sorted into two groups, one contains all estimated values smaller 

' -w'<180), the other contains 0< than the true value (0< OJ:r°e 
' ' < 180 °. 03 -- OJtrue 

w '  < tO,rue W' > Wfrue 
A N u m b e r  ( E r r o r )  (°) N u m b e r  ( E r r o r )  (°) 

0.25-0-50 671 72.03 641 72-35 
0.50-0-75 3621 63.98 3623 65.00 
0.75- 1-00 3141 55.47 2888 56-63 
1-00-1.25 1632 48.10 1413 46.20 
1.25-1.50 756 40.10 649 37.90 
1.50-1.75 356 37.03 277 38.25 
1.75- 2.00 192 28.20 138 30.19 
2-00-2.25 90 26.07 59 26.61 
2.25-2-50 35 35.75 41 22.69 
2.50-2.75 26 30-58 20 24-98 
2.75-3-00 14 29-15 6 19-27 
3.00-3.25 9 28-90 3 6.22 
3.25-3.50 3 15.20 3 4-60 
3.50-3.75 0 0-0 2 19.75 
3.75-4.00 0 0.0 I 0.67 
4.00-4-50 1 10.79 1 7.32 
4.50-4.75 0 0.0 1 49.39 

trial sets will be qi + 1 times the number  of kept trial 
sets ( - f i ve )  at each step, usually less than 50. It is 
not necessary to extend this calculat ion to a very large 
data set, because 100 steps will generate 100 high- 
quali ty phases which are enough to serve as the start- 
ing phases for the tangent formula.  

( f )  Starting with these 100 phases,  at each step 50 
addi t ional  phases can be est imated in the order estab- 
l ished by the convergence map, employing the gen- 
eralized tangent  formula which incorporates non-zero 
estimates for the invariants.  The phase results of  every 
extension are used to calculate the nearest integers. 
Full-matrix least-squares phase refinement follows. 
Repeti t ion of these steps will phase all the reflections 
in group one. 

(g) The phases in group two can be extracted by 
the tangent  formula alone or by step ( f ) .  This depends  
on the comput ing power avai lable  to treat very large 
matrix inversions. 

(h) Since the only avai lable  estimate of the 
invariants containing a restricted phase (those in 
group three) is zero, the restricted phases can be 
est imated only by the regular tangent formula.  Each 
phase of  a special reflection has two possible values. 
Three reliabil i ty factors can be used as figures of merit 
to select the correct values of the restricted phases: 
(1) a ;  (2) the number  of  contributors;  and (3) the 
difference between the calculated phase from the 
tangent formula  and the closer of  the two possible 
values of  the restricted phase.  The phases selected on 
the basis of  all three figures of  merit are, for the most 
part, correctly chosen. 

Assembly of steps (a)  to (h) yields a practical 
procedure for phasing an unknown structure of a very 
large size in reasonable  comput ing  time. 
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Table 2. Bottom of  the convergence map; reflection numbers are in bold type, single-digit numbers representing 
symmetry codes follow; the decimal numbers are A values of  invariants 

I I  0 9 1 - 3  0 1'45 i i  0 - 7  1 - 6  0 1-05 
!0 0 9 1 1 0 1.49 !0 0 - 8  0 5 0 1.19 
9 1 8 I 6 0 1.21 

- 8  0 3 0 I 0 1"18 
7 0 - 4  0 - 2  0 1"18 
6 0 - 3  0 - 2  0 1.34 6 0 5 0 - I  I 1-18 
5 0 4 0 3 0 1-42 
4 I - 2  0 I 0 1-40 

I !  0 - 1 0  0 - 8  0 1.04 

I, 2, 3 are used as origin-fixing reflections and are cons idered  as known phases. Hence  there are only p = 8 unknown phases and a system of  q = 12 
equat ions ,  a suitably chosen subset o f  which, consisting of  eight equat ions ,  is l inearly independent .  

The application 

Tests were done using calculated structure factors for 
the known 134 amino acid protein structure of  the 
P t C I 4 2 -  derivative of cytochrome css0, space group 
P2~2~2, with a = 4 2 . 7 0 ,  b = 8 2 . 1 7 ,  c = 3 1 . 5 6 A  
(Timkovich & Dickerson,  1973, 1976). The coordin- 
ates were obtained from the Protein Data Bank 
(Bernstein et al., 1977). Group  one has 616 general  
reflections with IEI> 1.2. Group  two contains 873 
general  reflections with 1-2 > ]E I > 0.8. Group  three 
contains 539 special reflections. All three groups of 
data have a resolution of 1.5 A. A VAX8600 computer  
was used for all the calculat ions.  

Three-phase  structure invariants  were generated 
and est imated assuming anomalous-scat ter ing data 
for reflections in group one (Haup tman ,  1982). 
Table 1 shows that the quali ty of the est imation is 
extremely dependen t  on the A value and the errors 
are unbiased  about  the true values. There are 20 135 
invariants  in group one, 106 682 structure invariants  
involve reflections in groups one and two and 145 688 
structure invariants involve precisely one restricted 
phase from group three. 

A convergence map was generated using the group 
one data (CPU - 2 . 5  min).  For the first 300 phases 
the criterion in the construct ion of  the map  was the 
product  of  the A values. The rest of  the convergence 
map used the number-of-re la t ions  criterion. At the 
end of the map,  three reflections were identified 
automat ical ly  for the unique origin choice. They are 
3,13,6, IEI = 2.37; 24,9,3, ]E I = 2.39 and 20,4,4, IEI = 
1.81. Each of  them is al lowed two possible initial 
phase est imations (45,315 ° or 135,225 °) which corre- 
spond to an origin shift in each dimension.  To be 
specific, choose for each origin-specifying phase the 
two possible values 45 and 315 °, one of  which will 
differ from the true value by less than 45 ° , the remain- 
ing two values (135, 225 °) correspond to a different 
choice of  origin and may  therefore be ignored. 
Because the possible phases were undetermined ,  for 
each of them two values which differ by 90 ° from 
each other have to be considered.  One of  the two 
values will have an error less than 45 ° . For space 
groups which require three reflections to fix the origin, 
eight trials have to be carried out. If we denote a trial 

with a phase in error by less than 45 ° as * and one 
with phase error greater than 45 ° as ×, the eight trials 
will be: 

1. , x x  3. x , x  5. x x ,  7. x x x  

2. x**  4. , x ,  6. **x  8. ***. 

One of  the two alternative sets in the same columns 
as above shows at least two of  the three phases with 
an error less than 45 ° . Since the tr ial-and-error least- 
squares method is relatively error insensitive, the 
origin-fixing reflections can be assigned even with a 
large error. Therefore it is r ecommended  that only 
two sets of  origin-fixing phases (rather than eight) be 
tested. By employment  of  the residuals,  R, the correct 
answer can be easily picked from the two solution sets. 

For the initial l inear-equat ion step eight equat ions 
were selected (Table 2). The tr ial-and-error least- 
squares program was run until 100 unknown phases 
were indiv idual ly  de termined for the two phase sets 
corresponding to the two trial origin assignments.  The 
two solutions have residuals  equal to R = 8-68 and 
R = 27.27% respectively. The first one obviously is 
the correct one. This step gave 100 high-quali ty phases 
with a mean  error of  - 1 6  ° (Table 3). 

The extension from 100 to 616 phases used the 
tangent  formula  and ful l-matrix least squares alter- 
nately. Firstly 30 new phases  which are located close 
to the first 100 reflections on the convergence map  
were calculated by the tangent  formula.  Then all the 
130 phases and three origin-fixing phases (which had 
not been refined previously) took part in the least- 
squares refinement.  Exper ience showed second cycles 
were rarely necessary. It took about twenty alterna- 
tions to reach all 616 phases (Table 4). 

This procedure  can be repeated until all general  
reflections are phased.  For a practical implemen-  
tation, however,  the inversion of  very large matrices 
can be a very high price for most computers.  On the 
other hand,  the mean error of  the first 616 phases was 
only about  25 ° and the average number  of triples per 
phase for the remaining  869 general  reflections was 
about  122, no doubt  good enough for the tangent  
formula.  Tests showed that, using the tangent  formula  
alone, the phases of group two could be well deter- 
mined.  The phase evaluat ion of  all 1485 general  reflec- 
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Table 3. The 103 ~o's determined by the trial-and-error 
least-squares method (454 triples, CPU - 1 0 m i n ) ,  
(error) of q~ = 15-45°; 47q~ < ~¢,,~e, (error) = 14.39°; 

56¢  > ~0,,~, (error) = 16.34 ° 

Again,  the results are in two groups  to s h o w  their unbiased nature. 

N u m b e r  N u m b e r  
(Error) (o) o f  ~ "~ ~,rue o f  q~ > ¢,roc 

O.O-IO.O 22 24 
10 .0-20 .0  15 17 
20 .0 -30 .0  6 8 
30-0-40-0 2 4 
40-0-50 .0  0 1 
50-0-00 .0  1 1 
70"0-80 '0  1 0 
90.0-100"0 0 I 

Table 4. The 616 phases estimated and refined by the 
tangent formula and least-squares methods ( 2 0 3 1 5  
invariants, CPU - 2  h 12 min) using the phase of 
Table 3; (error) ofq~ = 24.64°; 316q~ < q~, . . . .  (error) = 

25"57°; 300q~ > q~,,-,,e, (error) = 23-67 ° 

N u m b e r  N u m b e r  
(Error) o f  (4 ~ < ~tru~2 o f  q~ > q~tr,e 

0"0-10"0 115 11)7 
10"0-20 '0  90 86 
20"0-30"0 37 41 
30"0-40 '0  21 26 
40"0 -50 '0  11 9 
50"0-60 '0  5 6 
60"0-70"0 7 3 
70 '0-80"0  5 5 
80"0-90"0 3 3 
90"0-100"0 3 3 

100.0-110.0  4 2 
! 10 ' 0 -120 '0  4 1 
120-0-130-0 1 2 
130 .0-140 '0  4 2 
140.0-150-0 4 1 
150.0-160-0 1 0 
160.0-170.0  1 2 
170.0-180.0  0 I 

Table 5. The 869 phases estimated by the tangent 
formula alone (126 997 invariants, CPU ~ 5 6  min) 

1485 (616 + 869)~0's are sorted in this table which have: (error)= 
28.26°; 787~ < q~, .... (error) = 28.75°; 698¢ > so, .... (error) = 
2 7 - 7 0  ° . 

N u m b e r  N u m b e r  
(Error) o f  ~ < ¢,  .... o f  q~ > ¢,,u~ 

0 .0 -10 .0  245 222 
10.0- 20.0 208 189 
20 .0 -30 .0  117 105 
30 .0 -40 ' 0  50 54 
40 .0 -50 .0  37 28 
50 .0-60 .0  30 20 
60 .0 -70 .0  22 12 
70 .0 -80 .0  12 t 1 
8 0 . 0 - 9 0 ' 0  12 7 
9 0 . 0 - 1 0 0 ' 0  8 8 

100-0-110"0 6 6 
110-0-120.0 7 6 
120.0-130"0 4 11 
130.0-140-0 9 6 
140.0- ! 50-0 8 2 
150.0-160-0 4 0 
160.0-170.0  5 7 
170.0-180.0  3 4 

Table 6. 538 restricted phases were calculated using 
normal tangent formula ( 1 4 5 6 8 8  invariants, CPU 
- 4 0  min); the phase results shown in this table are 

sorted in different weight ranges 

N u m b e r  
Weight range o f  phases  Incorrect phases  

0 .9-1-0  211 28 13.3% 
0 .8-1-0  228 32 14-0% 
0 .7 -1 .0  258 40 15.5% 
0 .6 -1 .0  287 47 16.4% 
0 .5-1-0  316 53 16.8% 
0-4-1-0  354 64 18-1% 
0 .3 -1 .0  393 75 19-1% 
0 .2 -1 .0  425 91 21.4"/o 
0.1- 1.0 467 109 23.3% 
0 .0 -1 .0  538 136 25.3% 

tions in groups one  and two is shown in Table 5. 
Most  phases  have a small error and all o f  them are 
unbiased compared  to the true values.  

The 539 special  reflections were evaluated using 
the regular tangent  formula (all w~,,.k, = 0 . 0 ) .  The 
calculated results were forced to the closer o f  the two 
restricted values.  Each result had a quality weight  wj: 

14'. : W a W r W  ~ .I 

non-zero weight,  o f  these 136 had the incorrect value. 
However ,  if we accept only  those phases with weight  
> 0 . 5 ,  only 53 are incorrect among  316 phases  
(Table 6). 

The above  procedures  supply a total o f  1801 
reliable phases  (1485 from Table 5 and 316 from 
Table 6) for an E- or F-map calculat ion.  

w, = m i n  (1.0,  a / 1 0 . 0 )  

Wr = min (1 "0, ' redundancy ' /50 )  

we = min (1 "0, cos A¢) .  

Here, 'redundancy'  means  the number o f  structure 
invariants involving this phase and Aq~ is the 
difference between the calculated value o f  q~ and the 
closer of the two restricted values. 538 phases had 

Concluding remarks 

Experience  so far with this method has been very 
encouraging .  At the core o f  this procedure,  the trial- 
and-error least-squares method has a very practical 
nature. In the present paper the error of  the est imated 
invariants based on error-free structure factors is in 
the range 30 to 40 ° . It is bel ieved that the mean error 
will also be acceptable  when  a good measured data 
set is used. 
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It is also noteworthy that this is not an expensive 
operation, taking only a few hours on a minicomputer 
for the treatment of a thousand or more reflections. 
Except for the few origin-fixing phase sets, no 
multiple trials are necessary during the whole 
procedure. The figure-of-merit problem can normally 
be avoided. 

The authors thank Drs D. Langs and H. King and 
Mr S. Potter for helpful discussions. This work was 
supported in part by NSF grants DMB-8610382 and 
CHE-8508724. 
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Abstract 

The splitting of higher-order Laue-zone (HOLZ) lines 
of convergent-beam electron diffraction (CBED) due 
to the presence of dislocations in Si was investigated 
experimentally and theoretically. The parameters 
affecting the separation and relative positions of the 
fringes of split HOLZ lines were examined with 
experiments and /o r  computations. According to the 
results obtained, a method for identification of 
Burgers vector is discussed. 

1. Introduction 

The splitting of higher-order Laue-zone (HOLZ) lines 
in a convergent-beam electron diffraction (CBED) 
pattern from dislocations was first reported by 
Carpenter & Spence (1982). They found that a HOLZ 
line is split only if the value of g.  b does not equal 
zero. By identifying lines that remain unsplit, imply- 
ing g.  b = 0, the direction of the Burgers vector of the 
dislocation can be determined. The intensity sym- 
metry of Kikuchi bands reverses when the probe is 
moved from one side of the dislocation to the other, 
which can be used to identify the sense of b. They 
also make a two-beam dynamical calculation to show 
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that a line of the intensity minimum in the bright-field 
(BF) disc due to a HOLZ reflection can indeed split 
into two subsidiary minima due to the presence of a 
dislocation. Fung (1985) studied the HOLZ-line split- 
ting from stacking faults and dislocations. He pointed 
out that the splitting and unsplitting of the reflections 
correspond to the visibility and invisibility of the 
defect in the kinematical theory of diffraction contrast 
of imperfect crystals. Preston & Cherns (1985) made 
a kinematical calculation of HOLZ rocking curves to 
show the splitting of HOLZ lines due to dislocations. 
When the whole strained area associated with a dislo- 
cation is illuminated by a defocus convergent beam, 
Cherns & Preston (1986) and Cherns, Kiely & Preston 
(1988) found that HOLZ deficiency lines close to the 
dislocation shadow image twist and split in the large- 
angle convergent-beam diffraction (LACBED) pat- 
tern (Tanaka pattern). Their simulation with kine- 
matical approximation shows good qualitative agree- 
ment with the experiments. Tanaka, Terauchi & 
Kaneyama (1988) simulated LACBED patterns for 
dislocations with various characters (edge, screw and 
mixed) for different values o f g .  b and different depth 
of dislocation in the specimen with two-beam 
dynamical theory. They found that a HOLZ line 
generally splits into n + 1 subsidiary fringes, where 
n = g .  b, around the intersection point of the HOLZ 
line and the shadow image of the dislocation and the 
HOLZ line twists in the opposite direction if the sign 
of n = g .  b is changed. These results were successfully 
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